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Abstract— Accurate load forecasting is essential for 

managing smart grids effectively. It helps grid operators 

anticipate demand changes, optimize resources, and prevent 

overloads. However, achieving high accuracy is challenging 

because energy use can change a lot, and renewable energy adds 

more uncertainty. Traditional methods often fall short in 

addressing these issues, so better tools are needed. This study 

explores how Artificial Intelligence improves load forecasting in 

smart grids. Unlike most reviews that focus only on short-term 

forecasting, this paper covers short-term, mid-term, and long-

term horizons. Each type needs different kinds of data, accuracy, 

and computational efficiency, which AI is well-suited to handle. 

The paper highlights recent advancements and trends in building 

reliable and sustainable energy systems. It focuses on studies that 

adapt to real-time conditions like weather forecasts, social events, 

and economic indicators. The findings show that AI methods can 

predict energy demand more accurately, especially when 

uncontrollable factors are incorporated. This study also shows 

that hybrid models can make forecasts more reliable. Finally, it 

points out areas where more research is needed to solve 

challenges in managing smart grids using AI. 

Index Terms— Load Forecasting - Smart Grids - Artificial 

Intelligence - Short-Term Forecasting - Energy Consumption 

I. INTRODUCTION 

As global demand for electricity grows because of the 
rise of electric vehicles [1], digital technologies [2], and the 
growth of urban populations, traditional power grids are 
struggling to meet today’s complex energy demands. This has 
led to the development of smart grids. They allow two-way 
communication between energy providers and consumers, 
which improve the security and efficiency of electricity market 
[3]. They also facilitate the integration of renewable energy 
sources, reducing harm to the environment [4]. 

In this evolving energy system, ensuring security, 
efficiency, and cost-effective management is crucial for the 
success of smart grids [5]. Artificial Intelligence (AI) plays a 

key role in achieving these goals by improving Load 
Forecasting (LF) [6], [7], maintaining grid stability and 
optimization [8], [9], detecting faults and predicting equipment 
failures [10], [11], [12], managing Distributed Energy 
Resources (DERs) [13], [14], strengthening the security by 
detecting cyber threats [15], [16], and adapting to demand 
response [17], [18], [19]. These abilities make smart grids 
more adaptable to modern challenges. 

Load forecasting is a key part of smart grids. It predicts 
how much energy will be needed in the future to ensure a 
steady supply for consumers. Accurate load forecasting is 
essential for stable power supply [20], integration of renewable 
energy sources [21], cost optimization for both providers and 
consumer s [22], and efficient resource allocation [23]. With 
advanced tools, energy providers can predict demand and 
improve grid operations, making the energy system more 
sustainable and reliable [24]. 

Generally, load forecasting methods are categorized into 
three main levels based on timeframes [25]: 

• Short-Term Load Forecasting (STLF): Predicts 
demand over minutes to hours or days. It is 
critical for real-time grid operations like unit 
commitment, demand response, and optimal 
load flow [26], [27]. 

• Mid-Term Load Forecasting (MTLF): Covers 
hours to weeks or months and supports tasks 
such as fuel management, energy trading, and 
system maintenance [28]. 

• Long-Term Load Forecasting (LTLF): Focuses 
on yearly trends, helping with strategic planning 
and network development [29]. 

By understanding and addressing the unique needs of 
these timeframes, AI can greatly improve forecasting in all 
these areas, ensuring smart grids meet current and future 
energy demands. 
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It is important to evaluate the methods used to predict 
energy demand. Traditional statistical approaches, such as 
regression [30] and time series analysis [31] are simple and 
widely used [32]. They include models like Autoregressive 
(AR), Moving Average (MA), Autoregressive Moving 
Average (ARMA), Autoregressive Integrated Moving 
Average (ARIMA), and the Kalman Filtering (KF) algorithm 
[33], [34], [35]. These methods rely on historical data and 
statistical patterns to make predictions. However, they have 
limitations with complex, non-linear datasets. This makes 
them less effective for modern grids, especially with the 
unpredictability of renewable energy sources [36], [37], [38]. 

AI techniques, on the other hand, are better at handling 
large datasets and adjusting to changes. Therefore, they are 
highly effective in dynamic environments like smart grids [39], 
[40]. In energy systems, AI is used to automate and optimize 
processes and integrate renewable energy by forecasting 
supply and demand [41]. Fig. 1 shows how AI, Machine 
Learning (ML), Artificial Neural Networks (ANN), and Deep 
Learning (DL) are related. 

 

Figure 1. A hierarchical view of AI to DL 

Machine learning, a branch of AI, has greatly improved 
load forecasting. It analyzes large amounts of historical data to 
find patterns and trends that traditional methods may miss [43]. 
Neural Networks (NNs) are particularly good at identifying 
patterns in past load data and adjusting to real-time changes. 
Reinforcement learning techniques can adapt to feedback and 
improve medium-term and long-term forecasting, even when 
conditions change [32]. Unlike traditional methods that need 
manual adjustments, AI models are self-learning. They get 
better as they process new data [42]. AI can consider multiple 
factors at once by analyzing high-dimensional data from 
different sources. This results in more detailed and accurate 

forecasts. It’s worth noting that ML methods work well with 
the large data sets in smart grids, often performing better than 
DL models. Because of this, recent studies have focused on 
ML for load forecasting [44]. Advances in data collection and 
processing technologies have greatly improved forecasting 
accuracy [45]. For instance, the integration of Internet of 
Things (IoT) devices and smart grids allows for real-time data 
collection, which is especially useful for STLF. Similarly, 
high-resolution weather data and demographic information 
have improved accuracy for MTLF and LTLF. These advances 
make it easier to manage energy needs today and plan better 
for the future. 

Many studies highlight AI’s role in improving load 
forecasting. This paper focuses on progress in the past five 
years and how AI is helping create smarter energy systems. 

II. AI TECHNIQUES FOR LOAD FORECASTING 

AI-based load forecasting methods can be grouped into 
three main categories: machine learning, deep learning, and 
hybrid models. Machine learning techniques, such as Support 
Vector Machines (SVM) and Linear Regression (LR), are 
effective at handling large datasets and finding complex 
patterns. On the other hand, deep learning methods such as 
Recurrent Neural Networks (RNN) and Convolutional Neural 
Networks (CNN) are particularly effective at understanding 
complex relationships and dependencies in time series data. 
Hybrid models combine different approaches, such as 
statistical methods with neural networks, to improve accuracy 
and reliability. These AI techniques have shown great success 
in improving load forecasting. 

It's worth noting that while AI techniques offer great 
benefits for smart grids, several factors must be taken into 
account to ensure accurate prediction. As it’s depicted in fig.2, 
these are key factors that can affect load forecasting models in 
smart grids: 

• Weather conditions: Temperature, humidity, cloud 
covering, and solar radiation affect energy use 
patterns, particularly in short-term horizons. 
Considering these features is crucial with the 
increased use of renewable energy sources and 
heating or cooling systems [46]. 

• Time of day and seasonality: Energy usage changes 
daily and seasonally, requiring models to adjust to 
these patterns [47]. These features can influence 
short-term forecasting extensively. 

• Economic activity [48]: Economic factors like 
changes in Gross Domestic Product (GDP), industrial 
activity, and electricity prices affect demand, 
especially in long-term horizons. 

• Consumer behavior: Lifestyle changes, new 
appliances, and energy-saving habits lead to 
variations in energy usage patterns [49]. 

• Population growth and urbanization: Increasing 
population and urban development in long-term raise 
demand, especially in high-growth cities [50]. 
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• Technological advancements: Energy-efficient 
technologies and electric vehicles change demand 
patterns in long-term view [51]. In addition, 
variability from renewable sources like wind and 
solar adds complexity. 

• Grid infrastructure and energy losses [52]: Inefficient 
infrastructure and transmission losses can reduce the 
reliability of predictions. 

• Regulatory and policy changes: Policies promoting 
energy efficiency or carbon reduction impact energy 
demand and model designs. 

 

Figure 2. Key factors affecting load forecasting models in smart grids 

One major challenge is dealing with unpredictable 
factors. Many review papers discuss load forecasting methods 
but often ignore important external factors like weather, 
consumer behavior, and economic trends. These factors can 
significantly impact prediction accuracy. Ignoring them can 
make even advanced models less effective. Future research 
should focus more on these external factors and develop 
strategies to address their effects. The next section reviews 
recent studies from the past five years. The main goal is to 
emphasize how AI has improved load forecasting accuracy 
across short-term, mid-term, and long-term horizons, with a 
particular focus on addressing the factors listed above.  

A. Short-Term Load Forecasting (STLF) 

The majority of studies have focused on STLF. STLF is 
critical in day-to-day grid operations and immediate decision-
making. Several studies have analyzed the forecasting models 
accuracy during the COVID-19 pandemic. Ref. [53] proposed 
a short-term Markov corrector to improve the accuracy of a 
Prophet-based building load forecasting system. The corrector 
uses hourly power demand data collected in winter, considering 
how human activities and pandemic waves affect energy use. It 

should be noted that the effectiveness of the Markov corrector 
depends on data quality and variability. In [54], traffic data was 
combined with historical load, weather conditions, and time-
related variables, to forecast short-term residential electricity 
consumption. Using random forest models and data from two 
distribution grid areas, the study explored how traffic patterns 
influenced forecasting accuracy before and during the 
pandemic. It aimed to understand whether traffic data, could 
enhance forecasting accuracy during the pandemic, considering 
that travel restrictions and reduced public transport affected 
electricity consumption. 

Various learning techniques have been used to improve 
STLF accuracy. High-frequency data is often available for 
short-term periods, making it suitable for ML and AI models. 
Support Vector Regression (SVR), for example, is a supervised 
learning algorithm for regression analysis that uses kernel 
functions to map data and solve optimization problems. The 
authors in [55], tested SVR for demand forecasting using hourly 
data from the Greater Tehran Electricity Distribution Company. 
The results showed that SVR outperformed some ANNs in 
accuracy. Random Forest (RF) is another method that combines 
multiple decision trees to enhance predictions and minimize 
overfitting. In [56], an optimized RF model achieved higher 
accuracy than other statistical and machine learning methods by 
incorporating daily and weekly seasonality and calendar data. 
Gradient boosting which builds models sequentially to correct 
errors, was proposed in [56] for an energy management system 
using smart meters. The Proposed model incorporated various 
factors such as time, and energy consumption data. Results 
indicated that this method achieved better results than 
traditional approaches and other machine learning models like 
neural networks and decision trees. 

Deep learning networks have become widely established 
in the STLF field because of their ability to model complex non-
linear relationships and handle large datasets. The work in [6] 
explored load forecasting using four publicly available datasets. 
An attention-based 1D-CNN-GRU model was developed 
which enhanced data quality and generalization with 
preprocessing and data augmentation techniques. Additionally, 
the model parameters were optimized using a PSO technique. 

Long Short-Term Memory (LSTM) networks are widely 
used in smart grid forecasting because they handle complex 
temporal relationships and patterns in time series data without 
the vanishing gradient problem common in traditional neural 
networks [57]. They can include factors like temperature, wind 
speed, and other environmental variables to improve prediction 
accuracy [58]. Many researchers have employed LSTM for 
load forecasting in the last 5 years. For example, authors in [59] 
studied STLF using deep learning techniques, specifically 
stacked unidirectional and bidirectional LSTM networks. Using 
a four-year dataset with hourly electricity consumption and 
temperature data, the study found that single-layer Bi-LSTM 
networks achieved the highest accuracy, outperforming other 
models like Uni-LSTM and SVR. Similarly, LSTM-based 
models in [60] accurately forecasted solar energy integration 
into power grids by considering variables like irradiance and 
seasonal components. The researchers in [61] compared the 
performance of the proposed LSTM model with a traditional 
ensemble model composed of Multilayer Perceptron (MLP), 
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Radial Basis Function (RBF), and SVM cooperating with the 
autoencoder. Results showed that LSTM had superior 
performance in predicting 24-h load pattern and 1-h ahead load. 
The authors noted that individual consumer behavior has a 
higher impact on the total load in smaller regions. The authors 
in [62] used a recurrent LSTM neural network and two datasets 
from national and regional power system, examining hourly 
power demand over several years. The LSTM model achieved 
a high accuracy and was less sensitive to the type of database 
compared to traditional Feed-forward Neural Network (FNN). 
Ref. [63] introduces a novel hybrid CNN-LSTM using 
historical load data with a focus on non-linear patterns. Results 
showed that the proposed method achieves higher precision in 
various time horizons compared to traditional methods like 
LSTM, Radial Basis Function Neural Network (RBFNN) and 
eXtreme Gradient Boosting (XGBoost). In ref. [64], the 
researchers introduced an attention-based CNN-LSTM-
BiLSTM model in integrated energy systems using historical 
load, temperature, cooling load, and gas consumption data from 
the past five days. The proposed model achieved better 
forecasting performance than CNN-BiLSTM, CNN-LSTM, 
BiLSTM, LSTM, BackPropagation Neural Network (BPNN), 
random forest regression, and SVR. 

The researchers in [65] used a neuro-fuzzy system trained 
on data including temperature, humidity, solar irradiance, wind 
speed, and past load data. This hybrid approach enhanced 
prediction accuracy and grid stability. Ref. [66] proposes an 
optimum load forecasting strategy, using advanced techniques 
like the leopard seal optimization algorithm for feature 
selection, the interquartile range method for removing outliers, 
and the weighted k-nearest neighbor algorithm for accurate load 
forecasting. These methods reduced noise, improved feature 
relevance, and enhanced prediction precision. 

B. Mid-Term Load Forecasting (MTLF) 

Several researchers have worked on MTLF in smart grids 
focusing on seasonal patterns and economic trends mostly. For 
example, in [67] a multistep method using phase space 
reconstruction and SVM techniques improved accuracy and 
robustness over existing methods and showed that forecasting 
error does not diverge as the prediction step increases. The 
proposed method incorporated factors like seasonality, day type 
(working days, Saturdays, Sundays, and holidays), and 
historical load data. The study in [68] compared ARIMA, 
Wavelet-ARIMA, and ML models for MTLF, finding that ML 
models performed better with load data and climate factors like 
temperature and humidity. 

To enhance the accuracy of mid-term power load 
forecasting, the study in [69] combined kernel principal 
component analysis with a BPNN optimized by particle swarm 
optimization. The model used data of load, temperature, and 
holiday events, to forecast daily peak loads. The paper also aims 
to address challenges such as random weight threshold 
selection and rolling prediction errors. This method achieved 
reliable forecasts for daily peak loads by simplifying input data 
and optimizing the neural network parameters. 

Ref. [70] proposed a hybrid model for MTLF, combining 
exponential smoothing and a residual dilated LSTM network 

(RD-LSTM). This model used a pinball loss function with a 
penalty to reduce fluctuations, achieving better accuracy than 
classical statistical and machine-learning models. The model 
worked well even with limited data, forecasting monthly 
electricity demand across 35 European countries. Ref. [71] 
highlighted how factors like weather (temperature, humidity, 
wind speed, solar irradiance) and time (holidays, seasonal 
changes) influence electricity demand patterns. The authors 
utilized real-world hourly load data to test the efficacy of MLP, 
LSTM, and CNN in predicting load demands. It found that 
optimized deep learning models performed better for MTLF 
while MLP and LSTM performed better for STLF. 

The method proposed in [72] used locally linear 
embedding to extract nonlinear features of load data affected by 
factors such as weather, economic trends, and distributed 
generation. This approach reduces data dimensions and uses a 
sequence-to-sequence LSTM network to predict the load in the 
low-dimensional space. Results indicate that the proposed 
approach achieves greater prediction accuracy compared to 
numerous existing methods in forecasting loads one week and 
one month in advance. The researchers in [73] considered 
factors like seasonality, trends, and the need for data 
preprocessing to compare performance of ARIMA model and a 
hybrid CNN-Bi-LSTM model. The study found that ARIMA 
model performed exceptionally well but required extensive data 
preprocessing while the neural network models were easier to 
implement but needed larger datasets for optimal performance. 

The authors in [74] used ensemble learning models to 
forecast medium-term loads for isolated power systems. Factors 
like daily load values, calendar data, and previous load patterns 
were considered. The AdaBoost model, combining four linear 
regressions, achieved the highest accuracy. Finally, the work in 
[75] presented a two-stage forecasting framework for MTLF to 
improve accuracy over extended periods. This framework 
utilized BPNNs for initial short-term forecasts and RBFNN to 
forecast the remaining time steps and addresses data gaps and 
seasonal patterns. 

C. Long-Term Load Forecasting (LTLF) 

LTLF is distinct from STLF and MTLF primarily because 
of its focus on longer time horizons. This extended time horizon 
means that LTLF must consider trends like, population growth, 
GDP, and technology adoption. This makes ARIMA models 
and regression analysis suitable for LTLF because they are 
designed to handle time series data with trends and seasonality. 
These models are still widely used because they are simple and 
effective for large datasets. 

Other AI techniques and methodologies have also been 
used to enhance forecasting accuracy over long time horizons. 
The study in [76] used fuzzy logic to forecast annual electricity 
demand. It considered the effects of population growth and 
GDP on electricity consumption across different sectors. This 
method worked better than the Holt Two-Parameter model, 
highlighting the importance of incorporating population growth 
and GDP. In [77], the researchers applied AI techniques like 
RNNs, FNNs and SVR for LTLF in a smart grid. FNNs 
achieved the most accurate results, with the lowest errors. Ref. 
[78] used an adaptive backpropagation algorithm with a MLP 
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model. It considered energy consumption types and electricity 
outage periods. The proposed algorithm delivered the most 
accurate long-term forecasts compared to traditional methods 
like regression and even advanced AI models, such as RNNs. 

The work in [79] proposed a hybrid modeling method 
using LSTM and Gated Recurrent Unit (GRU) networks to 
forecast the annual peak demand of distribution feeders. It 
included data like temperature, economic and demographic 
trends, and load composition to improve accuracy. The authors 
in [80] proposed a novel sequence to sequence LTLF 
framework based on a hybrid CNN-LSTM model, for 
forecasting monthly peak load three years ahead. This 
framework considered factors including average load, 
electricity price, population change, PV power generation 
pattern, and temperature. Ref. [81] introduced an LSTM-RNN 
model for five-year electricity demand forecasting using hourly 
load data.  The model excludes weather data due to inaccuracies 
in weather predictions and focused on historical load patterns 
and time-based indicators instead. 

It's worth noting that as it can be observed from the 
previous paragraphs that LSTM is less popular in MTLF and 
LTLF applications because of its high complexity and 
computation time [82]. 

D. Multi-Term Load Forecasting 

Multi-Term Load Forecasting allows for a more dynamic 
energy system by addressing immediate fluctuations, medium-
term trends, and long-term shifts in energy consumption 
patterns. 

In ref. [83], a novel hybrid model named FARHAN is 
proposed for multi-term electrical load forecasting in smart 
grids, combining descending neuron attention, LSTM, and 
Markov-simulated neural networks. Using a dataset of 121,260 
instances of electricity consumption data, it predicts monthly, 
yearly, and 14-year load trends. It also considers the impact of 
factors like historical consumption patterns, technological 
advancements, and the increasing demand from sectors such as 
electric transportation. The study in [84] suggested a hybrid 
CNN-LSTM model with seasonal adjustments for medium-
term and long-term power load forecasting. The model used 
monthly power load data and seasonal turnover data and 
significantly improved the accuracy of monthly power load 
predictions. 

The authors in [85] tested methods like ANN, Multiple 
Linear Regression (MLR), Adaptive Neuro-Fuzzy Inference 
System (ANFIS), and SVM for both short-term and long-term 
electricity load forecasting in Cyprus. Input parameters were 
time, temperature, humidity, solar irradiation, population, 
gross national income, and electricity price. SVM performed 
best for long-term predictions, while ANN was better for short-
term analysis. The study in [86] introduces an improved 
sparrow search algorithm to optimize the hyperparameters of a 
SVM model for mid-long term load forecasting, using 
economic, social, and meteorological factors. The proposed 
model demonstrates great performance in forecasting accuracy 

and convergence speed compared to the original SVM, BPNN, 
MLR, and other models. 

III. HYBRID MODELS FOR LOAD FORECASTING 

Traditional load forecasting models often struggle with 
limitations that affect their accuracy, like failing to capture 
complex patterns and relationships in the data. On the other 
hand, AI-based methods are complex and need large datasets, 
leading to computational time increase. To address these issues, 
researchers have introduced hybrid models. These models aim 
to combine the strengths of different approaches and cover the 
limitations of single methods, such as statistical methods and 
machine learning. 

In ref. [87] a STLF method is introduced using a hybrid 
seasonal autoregressive integrated moving average with 
exogenous regressors model and LSTM networks. The dataset 
includes information on energy consumption, day of the week, 
month, weather cluster, and holiday flag. This hybrid model 
performs better than using single models alone. Ref. [88] 
proposed an ARIMA-GM-LSTM model for medium-term and 
long-term electricity load forecasting. The researchers used 
monthly maximum load data for three Chinese provinces. This 
model improves compared to ARIMA, GM, and LSTM 
individually. It also generalizes well across datasets, showing 
consistent performance. 

In [89], a novel combined probabilistic forecasting model 
has been developed for short-term electric load forecasting, by 
integrating Quantile Regression (QR) with a hybrid deep 
learning model. The researchers used load data, including total 
load and loads from two specific zones. The results 
demonstrated that the proposed model outperforms single 
models and traditional statistical models, in terms of reliability, 
resolution, and sharpness. 

IV. COMPARING FORECASTING METHODS AND 

ADDRESSING AI CHALLENGES IN SMART GRIDS 

The aforementioned AI techniques, with their distinct 
advantages, play a crucial role in improving load forecasting. 
Table 1 provides a comprehensive comparison of both 
traditional statistical methods and AI-based techniques for 
different forecasting horizons. It highlights the most commonly 
applied methods for each forecasting horizon over the past five 
years and proposes solutions to address their limitations.  

It is evident from Table 1 that ANNs are the most common 
AI-based techniques. Combining ANN with optimization 
techniques can reduce complexity and computational cost. This 
makes them effective and affordable for different forecasting 
needs. 

It's worth mentioning that comparing the accuracy of all 
methods is difficult because there isn’t a single, universal 
evaluation metric. Each metric focuses on different 
performance aspects, so it’s important to use a specific set of 
metrics to make fair and meaningful comparisons. Many 
studies also don’t include computational time. This makes it 
harder to judge how practical or efficient a method is, since 
different time horizons involve varying amounts of data. 
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Including computational time would help balance accuracy and 
efficiency for each method. 

Table 1. An overview of most applied techniques in load forecasting across time 
horizons. 

Forecast 
Horizon 

Methods Challenges Solutions 

STLF 

ANNs 

SVR 

CNN-LSTM 

Needs real-time, 
high-frequency 

data 

Pre-process data in 
real-time using IoT 

Sensitive to noise 
and sudden 

events 

Use noise reduction 
techniques (e.g., 

wavelet transforms), 
use hyperparameter 
optimization (e.g., 

PSO) 

MTLF 

RF 

GBM 

Hybrid AI-
statistical 

models (e.g., 
NN-ARIMA, 

LSTM- 
ARIMA) 

Low flexibility to 
sudden changes 

or anomalies 

Combine AI and 
statistical models 

Use transfer learning 
for better adaptability 

LTLF 

Regression 
analysis 

Time series 
analysis 

ANNs 

 

Traditional 
models may not 

capture non-
linear 

relationships and 
sudden changes 

Use advanced ML 
techniques to capture 
non-linear patterns 

Uncertainties in 
economic and 
policy changes 

Update models 
regularly with new 

data, scenario analysis 
to address uncertainties 

 

A. Future landscape of AI in smart grids 

The future of load forecasting in smart grids will greatly 
improve with advanced AI techniques like deep learning, 
reinforcement learning, and hybrid models. These methods can 
handle the complexity of changing energy demand patterns. 
New techniques like transfer learning and federated learning 
will help AI models adapt to different grid scenarios. Better 
storage systems will allow AI to handle large amounts of data 
and make faster decisions.  

AI will also work with other technologies like blockchain, 
edge computing, and 5G to improve grid operations. 
Blockchain will secure data and support decentralized energy 
trading. Edge computing will process data faster by working 
closer to its source. 

Additionally, AI models will improve predictions for 
renewable energy sources like solar and wind. This will help 
manage energy storage and demand-response strategies. By 
improving the grid's capacity to handle unpredictable energy 

sources, this capability will support the transition to a low-
carbon future. Smarter grids will become more self-sufficient. 
They will predict outages, optimize operations, and adjust to 
changes in demand and the environment.  

As AI models become easier to interpret, grid operators 
will trust them more. This will make it easier to use AI in 
regulated systems and support the transition to a low-carbon 
future. 

B. Challenges in AI adoption for smart grids 

While numerous data-driven methods have made 
progress in solving smart grid issues, AI adoption in smart 
grids still faces several challenges: 

• Integration with current energy systems [39], [90]: 
Most power grids were originally designed for 
centralized energy production relying on fossil fuels. 
This makes it hard to add modern technologies like 
advanced batteries, hydrogen fuel cells, and carbon 
capture systems. Renewable energy sources like solar 
and wind add more complexity, because they depend 
on weather and can cause fluctuations. Another 
critical concern is cybersecurity. AI must not only 
protect smart grids from cyberattacks but also 
maintain consistent grid performance. 

• Managing Big Data: One big challenge is improving 
how smart grids handle large amounts of data for AI 
applications, especially as data volume grows. Real-
time data from smart meters could improve 
forecasting accuracy, but challenges like delays and 
format mismatches make this difficult [91]. 

• Data Quality and Availability: AI models need clean, 
labeled, and comprehensive data, which is hard to get. 
Important variables such as weather conditions and 
consumer behavior must be included in the data. 
Preprocessing methods, such as filling in missing data 
and standardizing information, are essential for 
accurate predictions. 

• Feature Extraction for Complex Datasets: Many AI 
models struggle with complex datasets, especially 
when unpredictable factors like seasonal variations 
influence electricity use. Advanced techniques like 
deep learning or hybrid models can help solve this 
problem. These approaches are better at uncovering 
hidden patterns and adapting to unpredictable factors. 
Unsupervised learning and attention mechanisms can 
also improve accuracy by focusing on the most 
relevant data features. 

Addressing these challenges will improve the reliability 
and trust in AI-powered smart grids. 

V. CONCLUSIONS 

This paper reviews recent advancements in AI-based load 
forecasting for smart grids. Unlike many reviews that focus 
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only on short-term forecasting, this paper examines studies 
across all forecasting timeframes. It helps researchers compare 
methods and results, giving them a wider view for future work.   

AI techniques are becoming a preferred choice over 
traditional statistical methods because they are more accurate 
and better at handling complex patterns. For short-term 
forecasts, ANNs with optimized settings work well. It is 
recommended to include uncontrollable factors like weather 
data to make the prediction more accurate and reliable. For 
medium-term forecasts, deep learning models combined with 
statistical methods like ARIMA work well because they can 
handle large datasets effectively. Including seasonal patterns 
and economic trends into input data could be significantly 
helpful. The simplicity and effectiveness of traditional models 
make them suitable for long-term forecasting, but they will face 
challenges with large, non-linear data. In these cases, utilizing 
hybrid ANN-based approaches would be helpful. Despite the 
advancements, the success of AI models depends on several 
factors, like the model architecture, hyperparameter selection, 
and the quality of the input data. Hybrid models that combine 
AI with statistical methods are promising for better results. 
Future studies should focus on improving data integration, 
simplifying models, and making them more efficient. 

Researchers should also study the impact of variables 
such as weather, seasonal variations, time-of-day patterns, and 
consumer behavior on load forecasting. Additionally, Future 
studies should explore how factors like weather, seasonal 
changes, time-of-day, and consumer behavior affect load 
forecasting. Long-term trends like population growth and 
economic factors, such as GDP and income, should be included 
in yearly forecasts. This will make models more useful for 
energy planning and help create smarter, more sustainable 
grids. 
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